View source on GitHub |
Obtain a Slater determinant.
openfermion.circuits.jw_slater_determinant(
slater_determinant_matrix
)
The input is an \(N_f \times N\) matrix \(Q\) with orthonormal rows. Such a matrix describes the Slater determinant
\[ b^\dagger_1 \cdots b^\dagger_{N_f} \lvert \text{vac} \rangle, \]
where
\[ b^\dagger_j = \sum_{k = 1}^N Q_{jk} a^\dagger_k. \]
Args | |
---|---|
slater_determinant_matrix
|
The matrix \(Q\) which describes the Slater determinant to be prepared. |
Returns | |
---|---|
The Slater determinant as a sparse matrix. |